skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Skoulakis, Efthimios_M C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Skoulakis, Efthimios_M C (Ed.)
    Organisms have evolved the ability to detect, process, and respond to many different surrounding stimuli in order to successfully navigate their environments. Sensory experiences can also be stored and referenced in the form of memory. TheDrosophilalarva is a simple model organism that can store associative memories during classical conditioning, and is well-suited for studying learning and memory at a fundamental level. Much progress has been made in understanding larval learning behavior and the associated neural circuitry for olfactory conditioning, but other sensory systems are relatively unexplored. Here, we investigate memory formation in larvae treated with a temperature-based associative conditioning protocol, pairing normally neutral temperatures with appetitive (fructose, FRU) or aversive (salt, NaCl) stimuli. We test associative memory using thermal gradient geometries, and quantify navigation strength towards or away from conditioned temperatures. We find that larvae demonstrate short-term associative learning. They navigate towards warmer or cooler temperatures paired with FRU, and away from warmer or cooler temperatures paired with NaCl. These results, especially when combined with future investigations of thermal memory circuitry in larvae, should provide broader insight into how sensory stimuli are encoded and retrieved in insects and more complex systems. 
    more » « less